Login for faster access to the best deals. Click here if you don't have an account.

Electric power cables

Feb 22nd, 2022 at 13:28   Furniture & Appliances   Bahraigh   266 views
Contact us
  • electric-power-cables-big-0

Location: Bahraigh

Price: Contact us


Electric power cables

The most common type of electric power cable is that which is suspended overhead between poles or steel towers. These aerial cables consist of a number of wires, usually of copper or aluminum, twisted (stranded) together in concentric layers. Copper or aluminum is chosen for high electrical conductivity, while stranding gives the cable flexibility. Because aerial Motorcycle Cables are frequently subjected to severe environmental stresses, alloys of copper or aluminum are sometimes used to increase the mechanical strength of the cable, although at some detriment to its electrical conductivity. A more common design is to include in the stranded cable assembly a number of high-strength, noncorrosive steel wires. Many aerial cables, especially those operating at high voltages, are bare (uninsulated). Cables operating at lower voltages frequently have coverings of asphalt-saturated cotton braid, polyethylene, or other dielectric (nonconducting) material. These coverings offer some protection against short-circuiting and accidental electric shock.

Another type of electric power cable is installed in underground ducts and is extensively used in cities where lack of space or considerations of safety preclude the use of overhead lines. Unlike an aerial cable, a buried Control Cable For Machine invariably uses commercially pure copper or aluminum (mechanical strength is not a problem underground), and the stranded conductor is frequently rolled to maximize its compactness and electrical conductance.

Aerial and underground power cables compose a major portion of the electrical circuit from the generator to the point of utilization of the electric power. The balance of the circuit (and sometimes the entire circuit) may, however, require specialized cables. Illustrative of these usages and of the special conditions to be met are cables for use in steel mills and boiler rooms (high temperature), on mobile equipment (vibration and excessive flexing), in chemical plants (corrosion), for submarines and mines (mechanical abuse), near nuclear reactors (high radiation), and on artificial satellites (pressure extremes).

 

Electric telecommunication cables

Electric cables used to transmit information are quite different from power cables, both in function and in design. Power cables are designed for high voltages and high current loads, whereas both voltage and current in a communication cable are small. Control Cable For Boats operate on direct current or low-frequency alternating current, while communication cables operate at higher frequencies. A power cable usually has not more than three conductors, each of which may be 1 inch (2.5 cm) or more in diameter; a telephone cable may have several thousand conductors, the diameter of each being less than 0.05 inch (0.125 cm).

Protective coverings for electric communication cables are similar to those for electric power cables. They usually consist of an aluminum or lead-alloy tube or of a combination of metallic strips and thermoplastic materials. The insulation of a telephone cable is composed of dry cellulose (in the form of paper tape wrapped around the conductor or paper pulp applied to the conductor) or of polyethylene. The insulation thickness is a few hundredths of an inch or less. A coaxial cable, which first gained widespread use during World War II, is a two-conductor cable in which one of the conductors takes the form of a tube while the other (smaller but also circular in cross section) is supported, with a minimum of solid insulation, at the centre of the tube. Several of these coaxial units may be assembled within a common jacket, or sheath.

The construction of long submarine Spare Parts For Control Cable for either telephone or telegraph service is somewhat different from that discussed previously. A transatlantic cable for telegraphs was first completed in 1858 and for telephones in 1956; a fibre-optic cable first spanned the Atlantic Ocean in 1988. See also undersea cable.