Login for faster access to the best deals. Click here if you don't have an account.

Meaning and Principles of lenses

Dec 24th, 2021 at 08:39   Automobiles   Bareilly   245 views
Contact us
  • meaning-and-principles-of-lenses-big-0

Location: Bareilly

Price: Contact us


lens, in optics, piece of glass or other transparent substance that is used to form an image of an object by focusing rays of light from the object. A lens is a piece of transparent material, usually circular in shape, with two polished surfaces, either or both of which is curved and may be either convex (bulging) or concave (depressed). The curves are almost always spherical; i.e., the radius of curvature is constant. A lens has the valuable property of forming images of objects situated in front of it. Single lenses are used in eyeglasses, contact lenses, pocket magnifiers, projection condensers, signal lights, viewfinders, and on simple box cameras. More often a number of lenses made of different materials are combined together as a compound lens in a tube to permit the correction of aberrations. Compound lenses are used in such instruments as cameras, microscopes, and telescopes.

Optical principles for lenses

optical lens produces its focusing effect because light travels more slowly in the lens than in the surrounding air, so that refraction, an abrupt bending, of a light beam occurs both where the beam enters the lens and where it emerges from the lens into the air.visual image of the object. This image may be either real—photographable or visible on a screen—or virtual—visible only upon looking into the lens, as in a microscope. The image may be much larger or smaller than the object, depending on the focal length of the lens and on the distance between the lens and the object. The focal length of a lens is the distance from the centre of the lens to the point at which the image of a distant object is formed. A long-focus lens with beamsplitters forms a larger image of a distant object, while a short-focus lens forms a small image.

The simplest compound lens is a thin cemented combination of two single lenses, such as that used in the objective (the lens nearest the object) of a small refracting telescope. Microscope objectives may contain as many as eight or nine elements, some of which may be made of different materials in order to bring all colours of light to a common focus, and thus prevent chromatic aberration. The objective lenses used in cameras may contain from two to 10 elements, while a so-called zoom or variable-focal length lens may have as many as 18 or 20 elements in several groups, the different groups being movable along the axis by levers or cams in order to produce the desired change in focal length without a shift of the focal plane. Lenses also vary greatly in diameter, from as small as 0.16 cm (1/16 inch) for an element in a microscope objective to as large as 100 cm (40 inches) for an astronomical telescope objective. In reflectors and several other types of astronomical telescopes, concave mirrors are used for the objective instead of lenses.

Manufacturing optical lenses

In the manufacture of lenses, slabs of glass are cut with a glass saw or slitting disk; a piece of the desired type and shape is chipped to a rough, round blank, or the pieces may be heated to softness, rolled to a round shape, and pressed in a mold to the desired size and to approximately the desired curvature of the surfaces. The surfaces are then ground, or lapped, to the final form, using coarse emery, carborundum, or diamond as an abrasive. Lens surfaces are ground on an iron tool, either flat or suitably curved, using progressively finer grades of one of the abrasives mentioned above. In the grinding process, a rotating cup-shaped tool is mounted so that its axis of rotation intersects the axis of the lens at the centre of curvature of the desired spherical surface. The obliquity of the tool axis must be adjusted so that the rim of the tool cuts across the centre of the (concave) lens being generated. For convex lenses, the centre of the rotating tool face cuts the rim of the lens blank. As both tool and lens rotate about their respective axes, a spherical surface of the desired radius of curvature is generated on the lens. Also, there are optical windowsoptical mirrorsoptical prisms, etc.

 

Additional Details

Car Brand
Chevrolet